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1. Formulation of the problem. Let the pressure p(x, y, t) be
acting on the boundary z = 0 of a half-space xyz. As is known, two time-
dependent regions can be distinguished in an elastic half-space. In one
region there will be only longitudinal waves, while in the other region
longitudinal as well as transverse waves will exist.

We note that the front of the transverse waves will be a wave of a
weak discontinuity. For the case of elasto-plastic wave propagation the
qualitative picture of motions will be the same.

An approximate method of solution is given below for the problem of
propagation of waves of weak discontinuity in a half-space, the boundary
of which is subjected to the action of a normal pressure.

First, we note that the essential factor will be the displacement
along the z-axis in direction of the pressure on the boundary.

For u = v = 0, the dynamic equations of the theory of elasticity are
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From the form of this equation it is seen that the forward front of
the disturbed region is different from the same obtained from the exact
solution. We propose to improve equation (1.1) so that the form of the
forward front would coincide with the actual one.

Clearly in this case (1.1) will have the form
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It has to be emphasized that our formulation of the problem is diffe-
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rent from the acoustical version of the dynamic problem of the theory of
elasticity known in the literature.

Although (1.2) represents the wave equation, the boundary conditions,
however, are different from the boundary conditions for the displacement
potential, ¢. Besides, the stresses are expressed by » in a different way
than by ¢. Moreover, solutions of (1.2) for a given value of the normal
derivative dw/dz has a simpler form than for ¢. Even the qualitative
solutions of our formulation of the problem will substantially differ
from the acoustic formulation.

Indeed, the acoustic theory corresponds to the motion of an elastic
fluid. As a consequence of this, if on the portion of the boundary where
the pressure is applied there appears a depression, in opposition thereto
there will appear a bulge in the free portion. This is not observable in
the elastic hal f-space. Many properties as well as the solution of (1.2)
are close to reality.

We note finally that the solution of the static problem justifies the
assumption u = v = 0.

2. Solution of an approximate problem of wave propagation
in an elastic half-space. Following Rayleigh, we shall seek solutions
of (1.2) in the following form:
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The region of integration, w, is a part of a hal{-space bounded by the
surface of a hyperboloid

t=t— T VE— + ()2 (2.2)

and the plane r = 0. It is easy to demonstrate the following equality
¢
» o N
[F )= =25\ C @y e (2.3)
0

Note that if dw/dz = const. for z = 0, then from (2.3} we obtain
C(x, y, t) = 0, assuming that C{x, y, t) is a continuous function of t.

This difficulty is overcome if the condition of continuity of C 1s
abandoned, and if we put

C (o, y, t) = A4, 8(0) + Bz, y, 1) (2.4)

where 8{t) is Dirac's function; B{x, y, t), is a continuous function of
t. Then (2.4) yields
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From (2.5) we find 1 9 /0
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Substituting (2.4) and (2.6) in (2.1) we get
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Consider now a case of wave propagation due to a suddenly applied axi-
symmetric load, which remains constant after application.

The solution will have the form:

N B (T)drdEdy
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Using (2.3) and (2.4) we find
ow 1 € .
4Gl 2:9)

The region of integration in (2.7) is a common volume of a cylinder
of radius R, (radius of the load) and of the hyperboloid (2.2).

During the process of integration with respect to 7, the variables &
and n are separable. Consequently, in the &)-region the three cases of
the relative position of the circles

=2+ (—yP=au—2=r,  @fq=Re

are possible,

The integration takes place along a common part of the circles with
the radii R, and r.
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Case 1. Introducing polar coordinates we obtain
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(p ::'Pfazt2——-z2) (2.10)

We now explain where this solution is valid. For the case 1 it is seen
from Fig. 1 that

sz+y _*_V’ 22 __ ZZ<R0

We have 22 + y2 = r?, and consequentl
Y qu b4

a LV (Ro—r) +7° (2.11)

Since at is the distance from the forward wave front, then (2.11) means
that the solution (2.9) is valid in the shaded areas of Fig. 2. This is
in complete agreement with the physical picture of the motion. Thus it 1is
shown that the plane part of the forward wave front carries a pressure
which is applied at the initial moment.

Case 2. Let us split the region of integration into two parts, as shown
in Fig. 3. Putting x2 + y2 = rZ and a%t - y2 = p2, ¢, can then be found

from
- — p272
sinfy =/ 1[5 8T (2.12)

The equation of the polar radius in the region II will be

R =)V R2—r®*+r2cos*0—rcos (2.13)

By means of the fornulas (2.8) and (2.9) we obtain
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Using polar coordinates we have
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Since p? = a?t? - 2

, then
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Case 3. Note that r — p > Ry, r > Ry, and furthermmore (Fig. 4)

2 % __ 2
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R =rcos9— Vricos? + R —r?

We have therefore
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w=— 20, VT2 (2.15)
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Fig. 4.

Let us consider the one-dimensional problem. Jlere R,
only the first case. For simplicity assume that duw/dr =

= oo and we have
0 for z= 0,
t = 0, Then from (2.7) we obtain
1"-'1 an -5} d T1
-\ ¢ o\ L4\ ¢ ) e
w 2n§ef(t)dr§d§'/rz+z2 §T(t)[a(t 1) — z]dt

(‘51=t—“‘2‘“, 912V32(3_1)2—z2)
From here

T

w:—-gl ae (1) dx, wy = -»-as(t—%)::f(t — -Z«) (2.16)

where f(t) is the value of the velocity on the boundary.

3. An approximate solution of the problem of elasto-plastic
wave propagation in a half-space. The same reasoning as for the
case of elastic wave propagation will lead to the conclusion that for the

cases of the elasto-plastic waves a substantial role will be played by
the longitudinal displacements, i.e. displacements in the direction of

the given load on the boundary,
If we neglect the transverse waves, then in this case it can be
assumed that
w ., [P | Bw | ow
I (")[ 7 T ]

57 T (3.1)

where e is the intensity of the deformation.

For Prandtl’s model (3.1) is obviously linear, but only with dis-
continuous coefficients.

First we note that in this case e has the form
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From this it can be seen that in the region where the influence of the
boundary has propagated, the stress intensity is increasing, at least
near the boundary.

Assume that the pressure of (dw/dr),_ = ¢ is so large that
| dw/dr| >> € In this case we will have plastic deformation in the whole
region where the boundary exhibits its influence. The picture of elasto-
plastic wave propagation, accepting Prandtl’s model, is shown in Fig. 5.
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Fig. 5.

The only region of elastie deformation is the region A BCD (Fig. 5),
while the surface C,B,BCis a surface of discontinuity of deformations.

It is seen from Fig. 5 that the process is active everywhere. Notice
that only the pressure penetrates deep into the body, while large deform-
ations are concentrated in plastic regions. This is so because for a large
increase of ¢ the stresses are changed insignificantly.

We now consider the process to be rigid-plastic. In this case the for-
ward wave front will be the fron of plastic waves. The solution will be
the same as in case of propagation of elastic deformations, except that
instead of the elastic velocity of deformations, a, we substitute the
velocity of plastic deformations, a,.

Consider now the case of elasto-plastic mechanism of motion. We re-
present a solution by two functions:

- C (& n, 1)dEdndr
“T S§S VE—2r+(m—y)r+2 (3.3)
_ A (&, m)dEdy B (€, n, 1) dt dndt 3.4
e SSV(E—z)“r m—y+:z + SSS V(E—2)*+ (n—y)'s? 3-4)
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where @ 1s an intersection of a cylinder with the base equal to the area
of the load with the hyperboloid (2.1), and ¢, replaces a.

The region ¢ is a common part of the circles
g=7=R> (E—2)+O—y?+2=a?
The region Q is the intersection of the above-mentioned cylinder and the
hyperboloid (2.1).

The functions A, B and C are found from
!

ow, 74 '
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From this equation it is seen that for the initial deformation along

the line C,B,BC we have
VT IE

Thus, in the region of plastic deformations a solution 1is

W= wy -+ w, (3.6)
and in the region of elastic deformations
W= W, (3.7)

4. Analysis of the state of stress near the boundary of the
leading region. The displacement in the plastic half-space near the
boundary of the loading region is determined by (2.14), where a, replaces
a. BRewrite this relationship as
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where
r2+p?—Ro

2er p* = a®t*—2’ (4.2)

cos 6, =

?

From (4.2), differentiating with respect to z and r, we obtain

_ z rz—pz——Ro ¥4 . 02 . 1 rz+p"-——R02
_Sln92 62 ———“'ET ‘——'ZTPZ——-E—, —Slneg—(9—r~—?— 2pr2
0,
ow a, te 90, Drra s T o 99 S RaR/ar d6
a—,———,,———'f““VR (82) + 2, ar+27r VR2+22

Compute now dw/dr for z = 0. In this case the integrals in the
expression duw/dr will simplify, and we obtain
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Translated by R.M. E.-I.



