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1. Formulation of the problem. Let the pressure p(n, y, t) be 
acting on the boundary z = 0 of a half-space xyz. As is known, two time- 

dependent regions can be distinguished in an elastic half-space. In one 

region there will be only longitudinal waves, while in the other region 
longitudinal as well as transverse waves will exist. 

We note that the front of the transverse waves will be a wave of a 

weak discontinuity. For the case of elasto-plastic wave propagation the 

qualitative picture of motions will be the same. 

An approximate method of solution is given below for the problem of 

propagation of waves of weak discontinuity in a half-space, the boundary 
of which is subjected to the action of a normal pressure. 

First, we note that the essential factor will be the displacement 

along the z-axis in direction of the pressure on the boundary. 

For u = u = 0, the dynamic equations of the theory of elasticity are 

PW -&$+b2 
aia (1.1) 

From the form of this equation it is seen that the forward front of 
the disturbed region is different from the sBme obtained from the exact 
solution. We propose to improve equation (1.1) so that the form of the 

forward front would coincide with the actual one. 

Clearly in this case (1.1) will have the form 

SW 
- = a2 
ata (;g i- a$ + ag) (1.2) 

It has to be emphasized that our formulation of the problem is diffe- 
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rent from the acoustical version of the dynamic 

elasticity known in the literature. 

Although (1.2) represents the wave equation, 

problem of the theory of 

the boundary conditions, 

however, are different from the boundary conditions for the displacement 
potential, + Besides, the stresses are expressed by w in a different way 

than by +. Moreover, solutions of (1.2) for a given value of the normal 

derivative ~w/~z has a simpler form than for 46. Even the qualitative 
solutions of our formulation of the problem will substantiatty cliffer 
from the acoustic formulation. 

Indeed, the acoustic theory corresponds to the motion ,of an elastic 

fluid. As a consequence of this, if on the portion of the boundary where 
the pressure is applied there appears a depression, in opposition thereto 

there will appear a bulge in the free portion. This is not observable in 
the elastic half-space. Many properties as well as the solution of (1.2) 
are close to reality. 

We note finally that the solution of the static problem justifies the 

assumption u = u = 0. 

2. Solution of an approximate problem of wave propagation 
in an elastic half-space. Following Rayleigh, we shall seek solutions 

of (1.2) in the following form: 

w= 

The region of integration, 
surface of a hyperboloid 

7=t- 

o , is a part of a ha1 f-space bounded by the 

+ T/(6 - x)” + (7j - y)” + 2” (3.2) 

and the plane T = 0. It is easy to demonstrate the following equality 

Note that if &/dz = const. for z = 0, then from (2.3) we obtain 
Cfn, y, t) I 0, assuming that Cfx, y, t) is a continuous function of t. 

This difficulty is overcome if the condition of continuity of C is 
abandoned, and if we put 

where 8(t) is IXrac’s function; R(n, y> t ), is a continuous function of 

t. Then (2.4) yields 



On the elasto-plastic wave propagation in a half-space 603 

From (2.5) we find 
H(r, Y, 4 = -& &($),=, 

subst ituting (2.4) and (2.6) in (2.1) we get 

t 
i3W 
- 

az I=0 
= -.4-2rt B(s, y, 5)dr 

s 
0 

(2.5) 

(2.6) 

u:(r, y, 2, t) = A 6 (7) dEdvdT _ I wzT (x, Y, 0~) d7dEdq 

0 1/e - 4” + @I - YY + z2 
-- 
277 sss 

&) 1/e - 2)” + (q - Y)Z + ze (2.7) 

Consider now a case of wave propagation due to a suddenly applied axi- 
symmetric load, which remains constant after application. 

The solution will have the form: 

Using (2.3) and (2.4) we find 

(2.9) 

The region of integration in (2.7) is a corsnon volume of a cylinder 

of radius R, (radius of the load) and of the hyperboloid (2.2). 

king the process of integration with respect to r , the variables 6 
and n are separable. Gnsequently, in the h-region the three cases of 

the relative position of the circles 

(E - z)” + (q - y)" = a2t - z2 = r2, 

are possible. 

E2 + r2 = R,* 

The integration takes place along a comnon part of the circles with 
the radii R, and F. 

Case 1 Case 2 

Fig. 1 

Case 3 



604 Kh.A. Rakhratulin 

Case 1. Introducing polar coordinates we obtain 

(p = &2t2 - 2”) (2.10) 

We now explain where this solution is valid. For the case 1 it is seen 

from Fig. 1 that 

vx2 + y2 + Jra2t2 - z2 <R, 

We have x2 + y2 = r2, and consequently 

at < I+% - rJ2 + z2 (2.11) 

Since at is the distance from the forward wave front, then (2.11) means 

that the solution (2.91 is valid in the shaded areas of Fig. 2. 'Ihis is 

in canplete agreement with the physical picture of the motion. Thus it is 

shown that the plane part of the forward wave front carries a pressure 

which is applied at the initial moment. 

r 

Fig. 2. 

Case 2. Let us split the region of integration into two parts, as shown 

in Fig. 3. Putting z2 + y2 = r2 and a2t - y2 = p2, 8, can then be found 
from 

sin& = t/l-[Roa~$-raj (2.12) 

'lhe equation of the polar radius in the region II will be 

R = I/R,2-r2+r2~~~2Lrcos0 (2.13) 

By means of the formulas (2.8) and (2.9) we oLtain 
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Fig. 3 

Using polar coordinates we have 

-01 

Since p 2 = .2t2 - ,2 , then 

w = - & (at - 2) (2f~ - 28,) - & +[ [VP (e) + zz’_- zj de (2.14) 

-81 

Case 3. Note that r - p > R,, r > R,, and furthermore (Fig. 4) 

R. = r2 + p2 - 2rp cos e,, cos e =‘II$$!!! 2 

R = rcos0- vr2coS20+ Rn2-r2 

We have therefore 

[l/p2 + 22 - v/R2 + 221 de 

___ 

W = - ;$ 28, + &- 1 I/R2 + z2 de 

-0, 

(2.15) 
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Fig. 4. 

Let us consider the one-dimensional problem. JJere R, = m and we have 

onfy the first case. For simplicity assume that Au/& = 0 for z = 0, 
t = 0. 'Ihen from (2.7) we obtain 

51 51 

s r dr 
E; (T) dz r dO r -zzz.z = - s 

0 0 o vr2-l-Z~ o 
s; (T) [a (t - 7) -- z] dr 

(q = t - $, p1 = l/a2(t -T>” - 9) 
I 

From here 
+I 

WC- 

\ 
n E (5) dr, 20~ = -,,(t- b)= j(t -- 5) (2.16) 

(; 

where f(t) is the value of the velocity on the boundary. 

,7. An approximate solution of the problem of elasto-plastic 
wnve propagation in a ha1 f-space. The same reasoning as for the 

case of elastic wave propagation will lead to the conclusion that for the 

cases of the elasto-plastic waves a substantial role will be played by 

the longitudinal displacements, i_.e. displacements in the direction of 

the given load on the boundary. 

If we neglect the transverse waves, then in this case it can be 

assumed that 

where e is the intensity of the deformation. 

For Prandtl's model (3.1) is obviously linear, but only with dis- 

continuous coefficients. 

First we note that in this case e has the form 
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(3.2) 

From this it can be seen that in the region where the influence of the 

boundary has propagated, the stress intensity is increasing, at least 

near the boundary. 

Assume that the pressure of (aru/arl _ = 6 is so large that 

1 aw/&- 1 >> 6 S. In this case we will ha& ilastic deformation in the whole 
region where the boundary exhibits its influence. ‘lhe picture of elasto- 

plastic wave propagation, accepting Prandtl’s model, is shown in Fig. 5. 

Fig. 5. 

‘Ihe only region of elastic: deformation is the region ABCD (Fig. 51, 
while the surface CIB,BCis a surface of discontinuity of deformations. 

It is seen from Fig. 5 that the process is active everywhere. Notice 
that only the pressure penetrates deep into the body, while large defoxm- 

ations are concentrated in plastic regions. ‘Ihis is so because for a large 
increase of c the stresses are changed insignificantly. 

We now consider the process to be rigid-plastic. In this case the for- 
ward wave front will be the fron of plastic waves. ‘Ihe solution will be 

the same as in case of propagation of elastic deformations, except that 

instead of the elastic velocity of deformations, a, we substitute the 
velocity of plastic deformations, al. 

Consider now the case of elasto-plastic mechanism of motion. We re- 

present a solution by two functions: 

WI = sss C (c;, 7, 7) dF drl d7 
o 1/E--+)*+ (')-YY)'+z2 (3.3) 

w2 = ss A (5, rl) dS drl 
o 1/e - 42 + (7 - YP + 2 

(3.4) 
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where o is an intersection of a cylinder with the base equal to the area 

of the load with the hyperboloid (2.1), and a1 replaces a. 

The region u is a conmon part of the circles 

~2 = r12 = &2, (E - x)” + (‘1 - y )” + 22 = a92 

‘lhe region R is the intersection of the above-mentioned cylinder and the 
hyperboloid (2.1). 

‘Ihe functions A, B and C are found from 

From this equation it is seen that for the initial deformation along 

the line CIB,BC we have 

Thus ) in the region of plastic deformations a solution is 

w = wr + 202 (3.6) 

and in the region of elastic deformations 

w = w2 (3.7) 

4. Analysis of the state of stress near the boundary of the 
leading region. 'Ihe displacement in the plastic half-space near the 

boundary of the loading region is determined by (2.14), where al replaces 

a. Rewrite this relationship as 

(4.1) 

where 

(4.2) 

From (4.2), differentiating with respect to z and r, we obtain 

fJ2 

aw a to ae, 
5= 

_L_- R ~+~-~R2(92)+z2a~+2+ \ RaRIar d0 
__e,vRz + z2 

Compute now aul/& for z = 0. In this case the integrals in the 
expression t?w/dr will simplify, and we obtain 
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r2 cos2 0 + Ro2 - r2d6 = 2sin6,+ r 
sina 0 d0 

-02 
ra co9 0 + Roe - r2 

Translated by R.M. E.-I. 


